

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Effects of Mental Health on PROMIS Scores After Primary THA

Aris Paschalidis, BS^a, Mehdi S. Salimy, BS^a, Matthew G. Robinson, MD^a, Antonia F. Chen MD, MBA^b, Christopher M. Melnic, MD^{a,c}, Todd O'Brien MD, MBA^{a,d}, Hany S. Bedair, MD^{a,c}, Marilyn Heng, MD, MPH^{a,e}

^a Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA ^b Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA ^c Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Newton, MA ^d Department of Orthopaedic Surgery, North Shore Medical Center, Salem, MA ^e Massachusetts General Physician Organization, Boston, MA

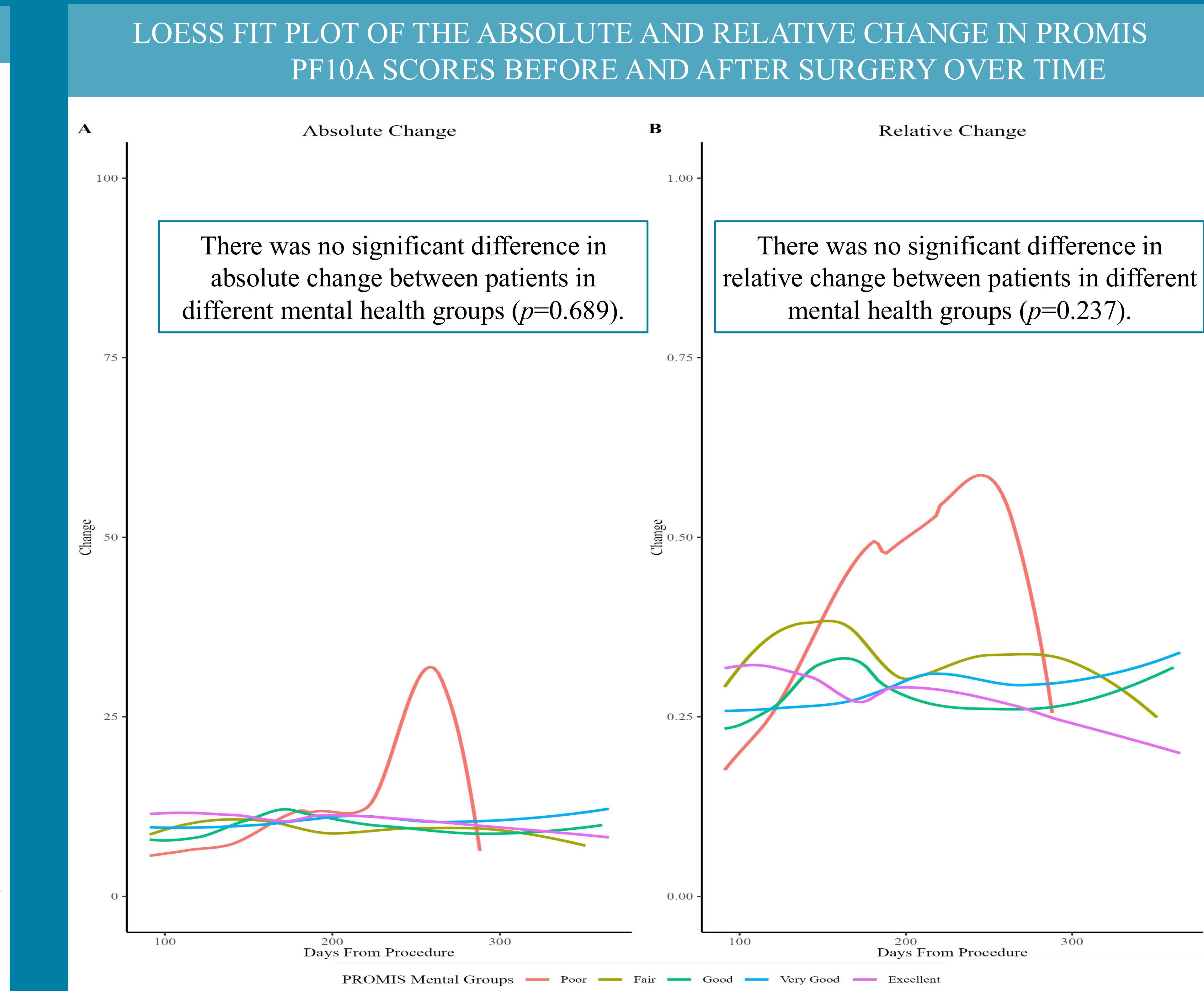
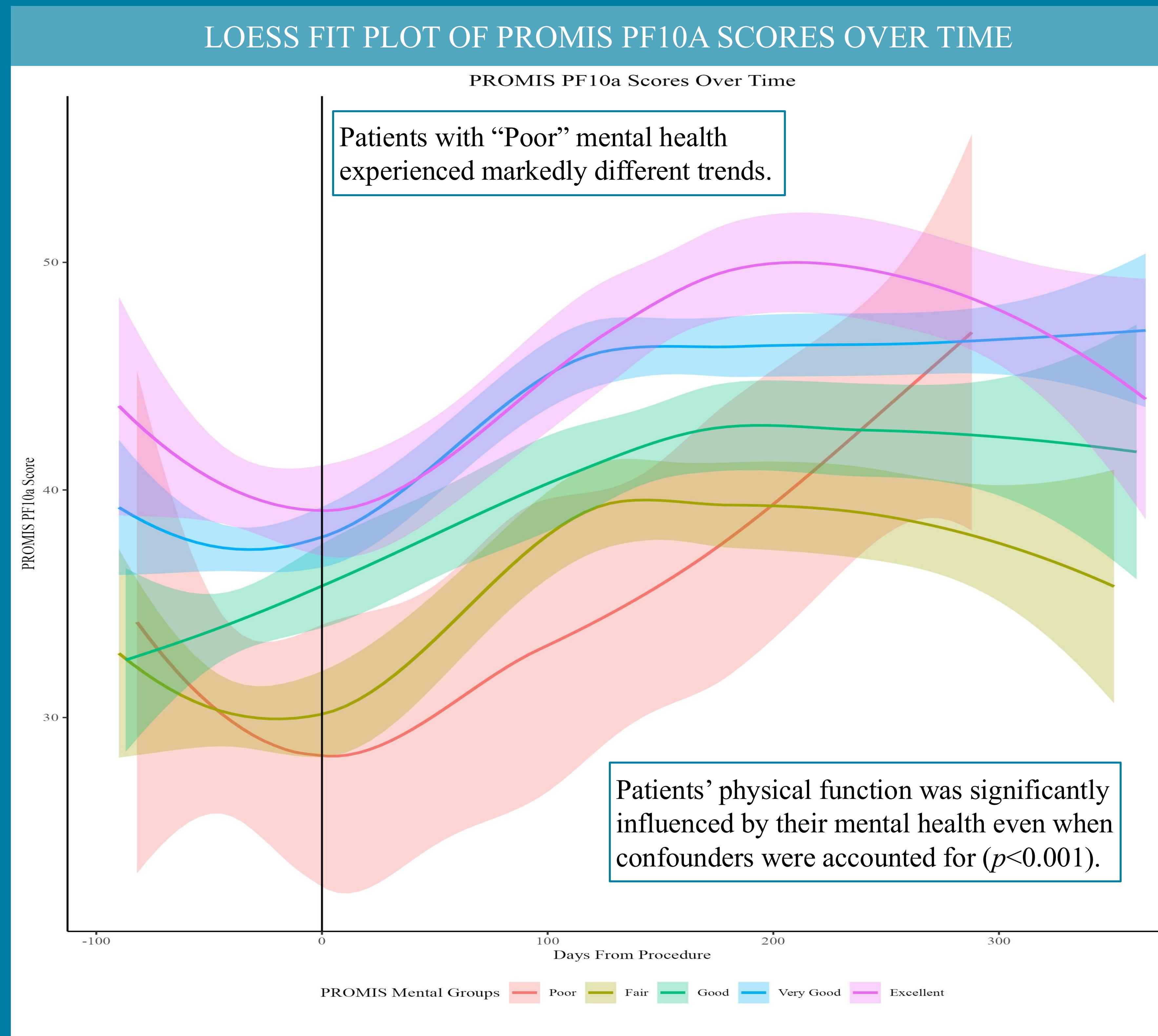
INTRODUCTION

- Worldwide trends continue to demonstrate an increase in the number of total hip arthroplasties (THA) performed each year.¹
- THA has proven to be one of the most successful orthopaedic surgical procedures.
- Despite its effectiveness, many patients continue to experience pain and discomfort following surgery.^{2,3}
- Recent work has identified that preoperative mental health may negatively influence postsurgical outcomes.^{4,5}
- To better understand and manage patient-perceived outcomes in terms of surgical success, orthopaedic surgeons have increasingly utilized patient-reported outcome measures (PROMs).⁴

Study Aims

- **To investigate whether preoperative PROMIS mental health scores influence preoperative and postoperative physical function following primary THA.**
- **To better understand the relationship between mental health and the change in physical function following surgery.**

METHODS



- An arthroplasty registry was queried for patients having undergone **primary THA** between June 2016 and December 2018 at one academic medical center.
- Patients were included in this study if they completed a preoperative PROMIS questionnaire within 3 months of their index surgery and 1 year postoperatively.
- Data from the following **PROM surveys** were collected:
 - PROMIS Scale v1.2 – Global Health (PROMIS Physical and PROMIS Mental)
 - PROMIS Short Form v2.0 – Physical Function 10a questionnaire (PROMIS PF10a)
 - Hip Disability and Osteoarthritis Outcome Score Physical Function Shortform (HOOS-PS)
- **Patients were divided into five categories** based on their baseline PROMIS Mental score: “Poor” (≤ 29), “Fair” (29-40), “Good” (40-48), “Very Good” (48-56), and “Excellent” (> 56).⁷
- Categorical and continuous variables were compared using the Pearson Chi-Squared test and the Wilcoxon signed-rank sum test, respectively.
- Patients grouped by preoperative PROMIS Mental scores were examined using locally estimated scatterplot smoothing (LOESS) curves.
- ANOVA and ANCOVA were used to measure significance. The Kruskal-Wallis test was used when assumptions were not met.

Effects of Mental Health on PROMIS Scores After Primary THA

Aris Paschalidis, BS^a, Mehdi S. Salimy, BS^a, Matthew G. Robinson, MD^a, Antonia F. Chen MD, MBA^b, Christopher M. Melnic, MD^{a,c}, Todd O'Brien MD, MBA^{a,d}, Hany S. Bedair, MD^{a,c}, Marilyn Heng, MD, MPH^{a,e}

^a Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA ^b Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA ^c Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Newton, MA ^d Department of Orthopaedic Surgery, North Shore Medical Center, Salem, MA ^e Massachusetts General Physician Organization, Boston, MA

Effects of Mental Health on PROMIS Scores After Primary THA

Aris Paschalidis, BS^a, Mehdi S. Salimy, BS^a, Matthew G. Robinson, MD^a, Antonia F. Chen MD, MBA^b, Christopher M. Melnic, MD^{a,c}, Todd O'Brien MD, MBA^{a,d}, Hany S. Bedair, MD^{a,c}, Marilyn Heng, MD, MPH^{a,e}

^a Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA ^b Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA ^c Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Newton, MA ^d Department of Orthopaedic Surgery, North Shore Medical Center, Salem, MA ^e Massachusetts General Physician Organization, Boston, MA

RESULTS

- A total of 445 primary THA patients consisting of 303 (68%) with a mental health diagnosis (MHD) and 142 (32%) without an MHD were studied.
- The mean age was 64.46 years (standard deviation 10.70), and patients were mainly of white or Caucasian descent (94%).
- Patients with **higher preoperative mental health scores** had **higher preoperative and postoperative physical function scores**.
- There was **no significant difference in absolute change** ($p=0.689$) **or relative change** ($p=0.237$) between patients in different mental health groups.
- Patients with the **poorest mental health exhibited higher physical function score variability** following surgery, but due to the small sample size of this group (n=15), the interpretation of the data may be unreliable.

CONCLUSION

- **Poor mental health should not be a contraindication** for performing primary THA.
- Instead, surgeons should pay close attention to patients with the lowest preoperative mental health scores when considering their postoperative recovery.
- These patients may require more **collaborative care to improve their mental health preoperatively and ensure better patient-reported outcomes** following surgery.

MEAN SURVEY SCORES

	Mental Health Diagnosis (n = 142)		No Mental Health Diagnosis (n = 303)		P Value*	
	Pre- Procedure	Post- Procedure	Pre- Procedure	Post- Procedure	Pre- Procedure	Post- Procedure
Days From Operation Survey Completed (mean \pm std):	31.76 \pm 22.80	193.23 \pm 78.44	31.60 \pm 21.17	193.58 \pm 78.47	0.730	0.830
PROMIS PF10a (mean \pm std):	35.41 \pm 6.45	42.72 \pm 9.00	36.32 \pm 5.54	45.07 \pm 8.22	0.147	0.003
PROMIS PF10a Change (mean \pm std):	7.31 \pm 8.60		8.75 \pm 8.01		0.067	
PROMIS Mental (mean \pm std):	47.00 \pm 10.84	49.66 \pm 10.70	50.42 \pm 9.21	54.40 \pm 8.99	0.002	<0.001
PROMIS Mental Change (mean \pm std):	2.66 \pm 7.87		3.98 \pm 7.78		0.113	

*P values were calculated using the Wilcoxon signed-rank test. The null hypothesis was that the medians of the two groups were the same, whereas the alternate hypothesis was that the medians of the two groups were different.

Effects of Mental Health on PROMIS Scores After Primary THA

Aris Paschalidis, BS^a, Mehdi S. Salimy, BS^a, Matthew G. Robinson, MD^a, Antonia F. Chen MD, MBA^b, Christopher M. Melnic, MD^{a,c}, Todd O'Brien MD, MBA^{a,d}, Hany S. Bedair, MD^{a,c}, Marilyn Heng, MD, MPH^{a,e}

^a Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA ^b Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA ^c Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Newton, MA ^d Department of Orthopaedic Surgery, North Shore Medical Center, Salem, MA ^e Massachusetts General Physician Organization, Boston, MA

DISCLOSURE

- A.P., M.S.S., M.G.R., T.O. have no conflicts to disclose.
- A.F.C., C.M.M., H.S.B., M.H. disclose various conflicts that can be found online.
- No disclosures are relevant to this study.

REFERENCES

1. Singh JA, Yu S, Chen L, Cleveland JD. Rates of Total Joint Replacement in the United States: Future Projections to 2020–2040 Using the National Inpatient Sample. *The Journal of Rheumatology*. 2019;46(9):1134-1140. doi:[10.3899/jrheum.170990](https://doi.org/10.3899/jrheum.170990)
2. Lewis GN, Rice DA, McNair PJ, Kluger M. Predictors of persistent pain after total knee arthroplasty: a systematic review and meta-analysis. *Br J Anaesth*. 2015;114(4):551-561. doi:[10.1093/bja/aeu441](https://doi.org/10.1093/bja/aeu441)
3. Wylde V, Hewlett S, Learmonth ID, Dieppe P. Persistent pain after joint replacement: Prevalence, sensory qualities, and postoperative determinants. *PAIN®*. 2011;152(3):566-572. doi:[10.1016/j.pain.2010.11.023](https://doi.org/10.1016/j.pain.2010.11.023)
4. Singleton N, Poutawera V. Does preoperative mental health affect length of hospital stay and functional outcomes following arthroplasty surgery? A registry-based cohort study. *J Orthop Surg (Hong Kong)*. 2017;25(2):2309499017718902. doi:[10.1177/2309499017718902](https://doi.org/10.1177/2309499017718902)
5. Rasouli MR, Menendez ME, Sayadipour A, Purtill JJ, Parvizi J. Direct Cost and Complications Associated With Total Joint Arthroplasty in Patients With Preoperative Anxiety and Depression. *The Journal of Arthroplasty*. 2016;31(2):533-536. doi:[10.1016/j.arth.2015.09.015](https://doi.org/10.1016/j.arth.2015.09.015)
6. Horn ME, Reinke EK, Couce LJ, Reeve BB, Ledbetter L, George SZ. Reporting and utilization of Patient-Reported Outcomes Measurement Information System® (PROMIS®) measures in orthopedic research and practice: a systematic review. *J Orthop Surg Res*. 2020;15(1):553. doi:[10.1186/s13018-020-02068-9](https://doi.org/10.1186/s13018-020-02068-9)
7. Hays RD, Spritzer KL, Thompson WW, Cella D. U.S. General Population Estimate for “Excellent” to “Poor” Self-Rated Health Item. *J Gen Intern Med*. 2015;30(10):1511-1516. doi:[10.1007/s11606-015-3290-x](https://doi.org/10.1007/s11606-015-3290-x)